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Introduction and overview

 The LHC

 The HiLumi Upgrade

 Crab cavities

 The Double Quarter Wave 

(DQW) crab cavity

 DQW HOM couplers
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 HOM coupler test boxes

 L-bend transmission

 Coaxial chamber

 Test box manufacture

 Future test boxes

 High power test box

 Thermal simulations



The LHC and the HiLumi Upgrade

 The Large Hadron Collider (LHC) is the largest particle 

accelerator in the world at 27 km in circumference.

 The peak luminosity value for the LHC in current 

operation is 1 x 1034 cm-2s-1.

 This corresponds to an integrated luminosity value of     

40 fb-1 per year.

 The High Luminosity Upgrade aims to increase the 

peak luminosity to 5 x 1034 cm-2s-1.

 Corresponding to 250 fb-1 per year.

 One aspect of the upgrade are the superconducting 

RF crab cavities.
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Map showing the location and size of the

Large Hadron Collider (LHC) [1].



The HiLumi upgrade

 The HiLumi upgrade aims to 

increase the luminosity by 

decreasing the value of β* in the 

luminosity equation.

 β* is the value of the beta function 

at the Interaction Point (IP).

 However, the mechanisms adopted 

to achieve this incur a reduction in 

the crossing angle (θc).
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Ideal head-on collision and collision with an induced

crossing angle for two charged particle bunches.

,



Crab cavities – correcting the crossing angle

 In order to correct for the luminosity 
loss, crab cavities are used to rotate 
the bunches – creating head-on 
collisions in the lab frame.

 Crab Cavities operate in the 
transverse dipole mode, phased at the 
zero crossing to provide a rotation of 
the bunch - this is known as the 
crabbing regime.

 The crab cavity designs selected for 
the HiLumi upgrade are the Double 
Quarter Wave (DQW) and Radio 
Frequency Dipole (RFD).

 These will be tested in the SPS in 2018.
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Crabbing of the bunches to provide head-on collisions in the

lab frame.

DQW (left) and RFD (right) crab cavities for the HiLumi LHC

upgrade [2].



Crab cavities – correcting the crossing angle
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Bunch rotation due to the 

sinusoidally varying transverse kick.



 The DQW was developed at BNL and is 

now the first of two crab cavities to be 

tested on the SPS.

 In addition to the crabbing mode, there 

exists several higher order modes (HOMs).

 If excited by the beam, these HOMs alter 

the electromagnetic field within the cavity.  

 This can have detrimental effects to the 

particle bunches by:

 Accelerating/decelerating.

 Adding energy spread,

 Providing a kick/rotation.

Double Quarter Wave (DQW) crab cavity

James Mitchell – j.a.mitchell@lancaster.ac.uk 7

[2]

Measured S21 response of the aluminium prototype

DQW [3].

Measured S21 response of the niobium PoP DQW crab

cavity at 2 K.



 Use an LC band-stop (a) structure and an L-

shaped high-pass filter (b) to achieve the 

required filter response.

 The HOM couplers for the DQW are on-cell 

couplers.

 Better damping is achieved by this.

 But the hooks are located in high field.

 The HOM couplers were originally designed for 

the Lancaster 4-Rod crab cavity and altered for 

the DQW.

 LC band-stop filter is located near the hook so 

that there is no heating of the copper gasket.

 Cooled by immersion in the liquid helium –

hollow inner conductor.

DQW HOM couplers
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 Simulation studies show that the HOM couplers are 

very sensitive to manufacturing tolerances.

 Therefore small geometric defects can severely effect 

the filter response.

 Hence a design study for potential test boxes was 

undertaken.

 OBJECTIVE: Can we analyse the spectral response 

of the HOM couplers before installation?

HOM coupler test boxes
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 In order to measure the frequency response of the HOM coupler reliably, a probe 

design is required which accurately reproduces the coupler response.

 Several coupling techniques were trialled.

 Best method’s had an inductive path to ground.

L-bend
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 Multi-port system designed.

 Low power spectral analysis.

 This design also allows high power 
testing, i.e. a transmission of power 
from HOM coupler port to the other.

 Validation possible with multiple 
ports.

 Inherent symmetry improved 
response.

 Can still use one coupler – blanking 
plate.

 Reproduces the 400 MHz rejection 
very well.

L-bend
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400 MHz

Frequency of the deflecting mode



Coaxial chamber
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 Four port symmetrical device.

 Uses an ‘off-the-shelf’ coaxial line with 
connectors which allow reduction to 7-
16/N-type.

 Robust system as manufacturing 
tolerances are not 

 However this means that optimisation 
parameters are very limited.

 Worse representation of the deflecting 
mode frequency.

 Another PoP for high power test box.

1
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Manufacture
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HOM Coupler
L-bend test box body Coaxial chamber – 3-1/8”coax line



DQW FPC test box for high power conditioning.

High power conditioning
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 High transmission between HOM ports needed for conditioning.

 DQW Fundamental Power Couplers (FPC) test boxes designed with 
this principle.

3
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 The electrical and thermal conductivities of Niobium vary with temperature 

significantly in the super conducing regime (0-9 K).

 Previously, this has been taken into account in post processing.

 However, CST MWS allows this to be taken into account.

Thermal simulations
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 Thermal loss map created from Eigen-

mode simulation.

 CST normalises the fields in the cavity to 

1J stored energy – fields re-normalised to 

nominal values during operation.

 Temperature of couplers can then be 

inferred.

 Currently – The new electrical and 

thermal conductivities need to be 

imported back into the EM simulation and 

this process needs to be iterated.

 This will allow the variable electrical and thermal 

conductivities to be accounted for.

Thermal simulations
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Thermal simulations
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 Next steps…

 Take into account that there is a 
magnetic field present which 
varies due to the location of the 
magnetic shield.

 To do this, the coupler will be split 
into sections and the residual 
resistance of each section will be 
changed to correspond to the 
value of the external magnetic 
field.

[5]



Summary and Questions
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Other HOM related work
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 DQW mechanical tuner tests at 2K.

 The spectral response of the deflecting mode 

and two HOMs were taken at various 

positions of the motor.

 The frequency deviation per step and 

hysteresis loss could be quantified for each 

of the resonances looked at.

 The measurements of the HOMs will allow 

us to calculate the RRR by taking the ratios 

of the Q-factors at ~10 K and 300 K.

 This is difficult with the deflecting mode as it is very 

weakly coupled at 300 K and thus it is difficult to get 

a Q-factor from this.

Example of method used to quantify effect of

mechanical tuner on HOM frequency.

Full spectral analysis of DQW at 2K from 350

MHz to 2 GHz.


