

DQW HOM Measurements, Analysis and Application

J. A. Mitchell^{1,2}

¹Engineering Department, Lancaster University ²BE-RF Section, CERN Graeme Burt Rama Calaga

7th HL-LHC Collaboration Meeting CIEMAT, Madrid, 13-16 November 2016

Introduction

- Tests of the DQW with HOM couplers.
 - Measurements taken.
 - Measurement deviation from simulations.
- Impedance and power for HL-LHC.
 - Current scenario.
 - Mode tolerance study.
- HOM coupler design re-visited.
 - Damping the impedance below the threshold.
 - New spectral power.

DQW Tests with HOM Couplers

-	No of HOM Couplers	Cavity	Helium Vessel?
-	▶ 1	NWV-DQW-001	N
-	► 3	CERN-DQW-001	Y
	1	NWV-DQW-002	Ν

Tuesday, A. Castilla Loeza, CERN DQW cold tests summary [1730]

DQW Tests with HOM Couplers JLAB Spectral Measurements

- S₂₁ measurements between HOM coupler and cold test Power Coupler (PC).
- Temperatures: 300, 4.5 and 2 K.
- Discrete frequency bands taken and stitched for increased resolution.

DQW Tests with HOM Couplers CERN Spectral Measurements

- 5 ports with couplers (PC, PU, HOMC1, HOMC2, HOMC3).
- 8 port configurations measured to measure all modes.
- Temperatures: 300 and 2 K.
- Discrete frequency bands taken and stitched for increased resolution.

DQW Tests with HOM Couplers HOM Measurements

- Narrow frequency bands measured at centre frequency of mode.
- Frequency and Q-factor recorded using Lorentzian fit function.

DQW Tests with HOM Couplers HOM Measurements

SPS pick-up not used.

1.8

2.0

1e9

- Narrow frequency bands measured at centre frequency of mode.
- Frequency and Q-factor recorded using Lorentzian fit function.

JLAB cavity is *not tuned* to the correct fundamental frequency. $f_0 = 403 \, MHz$

(non-conformity error) [1]. Simulation takes this into account. Possible source of error:

- Non-conformity is not exactly +5mm on all ports.
- Cold test power coupler and pick-up may perturb some modes.

Frequency and Q Spread

- Deviation in measured mode parameters from simulated for CERN-DQW-001 partially dressed test.
- Mode tolerances for <u>impedance</u>, <u>power</u> and <u>beam stability</u> simulations.

Analytical Tolerance Study *Cavity Impedance Spectra*

- Impedance spectra calculated in order to calculate the power.
- Currently some modes are above thresholds.

Analytical Tolerance Study

Cavity Power Spectra

• Resulting longitudinal power from HL-LHC parameters calculated.

Analytical Tolerance Study Problematic Mode

• Applying a frequency offset to the modes shows that there is one mode solely capable of substantially increasing the power.

- From the spread quantified, this corresponds to: = 0.00317
 - This value is within the measured spread of 0.00224 ± 0.00294
- The frequency of this mode in CERN-DQW-001 was <u>962.25 MHz</u>
 - 330 kHz above spectral line frequency.
- From the cold \rightarrow warm shift of -1.45 MHz observed the current predicted frequencies at cold are: <u>962.034 and</u> <u>962.253 MHz</u> respectively for <u>SPS cavity 1 and 2</u> using warm measurements on the string assembly.

Analytical Tolerance Study Problematic Modes

 From the cold → warm shift of -1.45 MHz observed the current predicted frequencies at cold are: <u>962.034 and</u> <u>962.253 MHz</u> respectively for <u>SPS cavity 1 and 2</u> using warm measurements on the string assembly.

HOM Coupler Design Changes

- HOM coupler improvements:
 - Improve the ease of manufacture.
 - Damp impedance thresholds to below the documented thresholds.
 - Further damp the mode at 959 MHz \rightarrow reduce power below 1 kW.

HOM Coupler Design Changes RF Improvements

- HOM coupler improvements:
 - Improve the ease of manufacture.
 - Damp impedance thresholds to below the documented thresholds.
 - <u>Further damp the mode at 959 MHz \rightarrow reduce power below 1 kW.</u>
- By altering the geometries of the HOM coupler, the transmission response was altered to better damp modes above the impedance threshold.

HOM Coupler Design Changes New Cavity Impedance Spectra

- 959 MHz mode:
 - Q: 1E4 → 0.057E4
 - $R_l: 1E5 \rightarrow 0.056E5$

All modes apart from one (1920 MHz) are below threshold.

HOM Coupler Design Changes New Cavity Power Spectra

> HOM Coupler Design Changes New power with 960 MHz mode deviation

- Power generated with deviation of the mode at ~ 960 MHz is much lower for the new HOM coupler.
- Frequency has changed slightly meaning that the shift necessary for maximum power has reduced from 0.3% to 0.2%.
- However, the power produced has reduced by a factor of 15.

HOM Coupler Design Changes *Further Analysis*

- The integrated power with the mode exactly on 960 MHz has reduced from:
 - 11 kW to 742 W
- However, the mode frequency has shifted from 958.87 MHz to 960.1 MHz.
 - At 960 MHz:
 - $\frac{\lambda}{2} = 15.6 \ cm$

 Coupler geometries which effect the frequency of this mode are being investigated.

• In addition, it was commented that the distance between the hook and capacitive jacket should be increased. This has now been performed and has a minimal effect on the mode damping.

Power Directionality

- It is important to take into account that mode power is not equally split through each coupler.
- Using the ratio of the external Q-factors corresponding to individual port simulations it is possible to see how the extracted power is distributed.
 - → The simulations assume no power is extracted by the FPC or beam pipes and do not take into account Ohmic losses in the cavity.
- Multiplying the mode impedance by the percentage will give a power spectrum for each coupler.

Using current HOM coupler design:

Conclusion

- Tests of the DQW crab cavity with HOM couplers
- Mode parameter measurements
 - Analysis deviation from simulated $\rightarrow \frac{\Delta f}{f} = 0.00224 \pm 0.00294$
- Analysis for HL-LHC
 - Impedance and power calculations.
 - Tolerance study and problematic scenario \rightarrow Mode at 960 MHz can produce large power.
- HOM Coupler Re-design
 - Manufacture improvements.
 - Meeting the impedance threshold.
 - Reducing the power $\rightarrow 11 \text{ kW to } 742 \text{ W}$
- Further HOM coupler investigations
 - Shifting the frequency of the 960 MHz mode whilst keeping the spectral damping sufficient.
- Taking into account the power does not 'split' evenly.

Questions?

References

- 1. Paula Freijedo, "HL-LHC: Quality Non Conformity Report ". EDMS 1759686: https://edms.cern.ch/ui/#!master/navigator/document?P:1771791600:1242869639:subDocs
- 2. I. Karpov, Beam dynamics studies for FCC-ee, 30 May 2017.
- 3. F. Caspers et al., IMPEDANCE MEASUREMENT OF THE SPS MKE KICKER BY MEANS OF THE COAXIAL WIRE METHOD, PS/RF/Note 2000-004.