HOMs for HL-LHC Crab Cavities *RF-Mechanical Aspects*

J. A. Mitchell 1, 2

1Engineering Department, Lancaster University: *Graeme Burt* 2BE-RF Section, CERN: *Rama Calaga*

IET-STFC RF-Mechanical Workshop Daresbury Laboratories, Warrington, UK, 13 September 2018

"… is therefore critical that combined RF and Mechanical studies are performed as part of RF device development" IET event description

I will present **DQW HOM coupler development**, design decisions and problems associated with **RF design and mechanical engineering.**

Outline

1) Theory

- HOMs, Excitation and Damping
- HOM Coupler

2) DQW HOM Coupler

- **Operation**
- RF-mechanical
	- Thermal, multipacting, design advantages
- Evolution to LHC
	- Lessons Manufacture
	- Lessons Power lines and feedthroughs
	- RF thresholds
- New Design

3) Alternative Design

4) Future concepts

HOMs

HOMs

- Higher Order Modes
- Resonances (eigenmodes) at frequencies higher than the fundamental.

Why are HOMs Undesirable?

- 1. Beam instabilities and emittance growth.
- 2. Power generation.

Which mode types cause which problems?

- **Longitudinal (e.g.** TM_{010} **)**: Longitudinal emittance growth, energy spread and power generation.
- **Transverse (e.g.** TE_{110} **)**: Transverse emittance growth and beam motion instabilities.

HOM Excitation

- The fundamental mode is excited from an **external RF source**.
	- Modulator, klystron, gridded tubes, magnetrons, solid state etc…
- The HOMs are excited from the **charged particle beam**.

Particles enter cavity ↓ Image charges cannot travel as fast as bunch (longer path) ↓ RF energy left behind: this is the WAKEFIELD and is an EM wave ↓ The energy is deposited in each excitable mode (need e-field along axis of beam propagation)

HOM Damping

- HOM damping: providing a **power flux** away from the cavity resonator at the HOM frequency.
- Reduces the Q_e of the mode.

$$
Q_e = \frac{\omega_0 U_{st}}{P_e} \qquad \frac{1}{Q_l} = \frac{1}{Q_0} + \frac{1}{Q_e}
$$

• Mechanisms:

Note, for superconducting cavities, the Q0 is so large that we can assume Ql=Qe.

Coaxial dampers (on beam pipe), waveguide dampers (on beam pipe), absorbers, Fundamental Power Coupler (FPC), **on-cell dampers.**

The HOM Coupler: RF operation

Taking the LHC HOM coupler as an example:

1) Couple to the field

- **'Hook' coupling mechanism.**
- **Preferentially magnetic coupling but also electric.**
- **2) Reject fundamental mode**
- **L-C notch filter at 400 MHz.**
- **3) Provide power flux to HOMs**
- **Coaxial transmission line to load.**

F. Gerigk Design of Higher Order Mode Dampers for the 400 MHz LHC Superconducting Cavities

DQW HOM Coupler: RF Operation

- DQW: Double Quarter Wave
	- Superconducting crab cavity for HL-LHC.
	- Currently being tested in the SPS (7 km proton synchrotron at CERN)
- DQW HOM Coupler: SPS version

DQW HOM Coupler: Eqiv. Circuit

- **Equivalent circuit** modelling can **reproduce the transmission response** of the coupler very well.
- The circuit simulations are **many order of magnitudes faster** than the 3D FEA simulations.

- Magnetic field on coupler \rightarrow Ohmic losses \rightarrow Heating
- The heating is a function of:
	- 1. Amplitude of the magnetic field.
	- 2. Heat transfer coefficient.

- Frictionless flow of liquid through channel.
- Heat energy deposited in helium bath.
- Note(!): **1 W/cm2** limit.

Both of these are a function of to material properties and temperature.

Hook is the most at risk from heating!

- Highest H-field
- Large distance from cooling channel.

Electrical Conductivity

$$
\sigma = \frac{\mu_0 \pi f_{Hz}}{R^2}
$$

$$
R = R_{BCS} + R_{residual}
$$

$$
R_{BCS} = \frac{2 \times 10^{-4}}{T} \times \left(\frac{f_{GHz}}{1.5}\right)^2 \times e^{\frac{-17.87}{T}}
$$

Thermal Conductivity

- Phonon peak varies dramatically with chemical processing [T1].
- I use a pessimistic approach (orange curve).

Iterative Simulation Technique:

- 1. Simulate electromagnetic fields in cavity structure for given **temperature and residual resistance** (CST) and scale to $V_T = 3.4$ MV.
- 2. Simulate heating using thermal conductivity at that temperature.
- 3. Iterate until temperature convergence.

Note: We split into sections and pessimistically take the maximum temperature.

Results for Rs = 10 nOhm, K = 57.3 W/K/m

RF-Mech: Multipacting

Resonant electron instability

-
- 1. Electron strikes surface (with certain energy). $\begin{bmatrix} 2 \ \frac{3}{2} \\ \frac{3}{2} \end{bmatrix}$
2. Generates (on-average) more than one 2. Generates (on-average) more than one secondary particle.

- If secondary returns with same RF phase and energy – avalanche effect – exponential electron growth.
- The electrons are a well for RF power limiting the cavity from increasing in voltage.

RF-Mech: Multipacting (…double point)

Note, the results are for a modified coupler, but present multipacting sims. conceptually.

15

RF-Mech: Mech. Advantages

- 1. Gasket heating
	- The **LC band-stop** is before the **gasket**.
	- This acts like an **electrical short**.

- Very little dynamic heat load on the copper gasket $(\sim mW)$!
- CRYOMODULE HAS DYNAMIC HEAT LOAD LIMIT \sim 20 W).
- 2. Window location
	- Window is perpendicular to charged particles ejected from beam.
	- Screening current on window avoided
	- WINDOW BREAKS \rightarrow CRYOMODULE DOWN!

Beam

Evolution: Mech. Difficulties #1

Machining

Wire cut from bulk Nb. Machined from flat to

round cross section.

Solution: rectangular profile.

- Machining time is very expensive.
- Circular cross-sections are the bottle-neck.
- For $6*4$ +spares this represents a significant cost.

Evolution: Mech. Difficulties #2

Welding of Capacitive Jacket

- Difficult to weld on curved surface.
- Could result in alignment issues and notch detuning.

Solution: Weld on flat surface.

Evolution: Mech. Difficulties #3

Manufacture of Outer Conductor

• Perpendicular coax line is 'flush' with coupler base.

Hence \rightarrow Machined from bulk which is very expensive with large 'wastage'.

Solution: Raise output line from base.

Evolution - Feedthroughs

Content from E. Montesinos (CERN)

16 kW pulsed 1ms – 1Hz

4 kW CW during 8 hours

• Vertical test – feedthroughs leaked!

… in parallel

LEP type feedthrough and field antenna feedthrough have been assemble onto a vacuum leak detection system After five cycles 60 seconds in cold nitrogen(-190 C) + 60 seconds in hot water (+80 C), both designs were qualified

Evolution - Feedthroughs

Content from E. Montesinos (CERN)

Evolution: RF Issues

IMPEDANCE

Some modes are above the impedance threshold.

POWER

- I measured the deviation in frequency and Qe for the manufactured cavities.
- Applying the variation observed stochastically… worst case HOM power for HL-LHC…

DQW HOMC: Design Goal

- 1. Incorporate solutions to manufacturing issues
- 2. Reduce all modes to below impedance thresholds.
- 3. Reduce impedance of 960 MHz mode to < 1e4 Ohms/cavity

DQW HOMC: Solution

- 1. Flat section on capacitive jacket.
- 2. Square profile throughout.
- 3. Lifted output line for extruded 'can'.

Conclusion

- RF design stage should incorporate mechanical engineering ideals.
	- Thermal, multipacting, operational advantages.

• SPS tests have given many lessons which will improve development of LHC infrastructure.

Thanks for Listening!

Back-Up Slides

DQW HOMC: Alternative

- **Quarter wave rejection filter – centered at fundamental mode.**
- **Harmonics reject also.**
- **Advantages**
- Loop type coupling magnetic coupling to HOMs – good broad-band damping.
- High H-Field on cooled section no ΔT to He.
- Very easy to manufacture mass produce.
- Disadvantages
- Gasket heat-load 1000 x higher than LC stopband.
- Harmonics can be moved slightly but will always be present.

Future Ideas – HOMC Conditioning

FPC's are conditioned before installation:

• Acceptance test, desorption of absorbed gasses, ensuring required power level (without RF breakdown), training ceramic…

Technique

- Power, pulse length, duty cycle: Low \rightarrow High (with FM and AM)
- Using 'test-box' in travelling wave mode.

HOM couplers are becoming higher and higher in power

• **Do not see high power at high frequency until beam!**

RF-Mech: Test Boxes

