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Presentation Aim

“... is therefore critical that combined RF and Mechanical

studies are performed as part of RF device development”
IET event description

I will present DOW HOM coupler development,
design decisions and problems associated with RE
design and mechanical engineering.
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HOMs
* Higher Order Modes
* Resonances (eigenmodes) at frequencies higher than the fundamental.

Why are HOMs Undesirable?

1. Beam instabilities and emittance growth.
2. Power generation.

Which mode types cause which problems?

* Longitudinal (e.g. TM,,,): Longitudinal emittance growth, energy spread and
power generation.

* Transverse (e.g. TE;,): Transverse emittance growth and beam motion
instabilities.



HOM Excitation

¢ The fundamental mode is excited from an external RF source.

*  Modulator, klystron, gridded tubes, magnetrons, solid state etc...

* The HOMs are excited from the charged particle beam.

./
/ i Analogy:
/ Wake produced by a boat.
= e . — -\\\.'- i ! 1 \‘."‘- " 2 - -

Particles enter cavity

l

Image charges cannot travel as fast as bunch (longer path)

l
RF energy left behind: this is the WAKEFIELD and is an EM wave

l

The energy is deposited in each excitable mode (need e-field along axis of beam propagation)



HOM Damping

* HOM damping: providing a power flux away from the
cavity resonator at the HOM frequency.

* Reduces the Q, of the mode.
Q WO U.St i _— 1 _'_ 1
e = —
P, Qi Qo Qe
[ Mech ani Sms : Note, for superconducting cavities, the QO is so large that we can assume Ql=Qe.

Coaxial dampers (on beam pipe), waveguide dampers (on beam pipe),
absorbers, Fundamental Power Coupler (FPC), on-cell dampers.

1 WG +2 DQW Couplers 3 WG Couplers
WG cutoff frequency is WG cutoff frequency is 2DQW Couplers
setat 1.1 GHz set at 0.91 GHz

S. Zadeh (Uni. Rostock)




The HOM Coupler: RF operation

* Taking the LHC HOM coupler as an example:
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1) Couple to the field

. ‘Hook’ coupling mechanism.

. Preferentially magnetic coupling but also electric.
2) Reject fundamental mode

. L-C notch filter at 400 MHz.

3) Provide power flux to HOMs

. Coaxial transmission line to load.
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Figure 3.10: Transmission line circuit for electric coupling
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Figure 3.11: Transmission line circuit for magnetic coupling
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Design of Higher Order Mode Dampers for the 400 MHz
LHC Superconducting Cavities




DQW HOM Coupler: RF Operation
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 DQW: Double Quarter Wave

* Superconducting crab cavity for HL-LHC.

* Currently being tested in the SPS (7 km proton
synchrotron at CERN)

* DQW HOM Coupler: SPS version

Vacuum model CAD model
1 < 1| Hook type coupling
\/ LC N\ [ L.C band-stop filter
4
//','
V7
e oteee Gasket I
Y,
A
50 Q output line and A
matched window, Capacitive gap 5, % ‘A Eccentric coaxial line
! |J: )ilm . Connection to wall
. T e
TRURK 7 77T

Perpendicular coaxial line




DQW HOM Coupler: Eqiv. Circuit

* Equivalent circuit modelling can reproduce the transmission response of
the coupler very well.

* The circuit simulations are many order of magnitudes faster than the 3D FEA

simulations.
/
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RF-Mech: Thermal

*  Magnetic field on coupler > Ohmic losses =
Heating

* The heating is a function of:
1.  Amplitude of the magnetic field.

2.  Heat transfer coefficient. \

* Coupler is internally cooled by 2 K SUPERFLUID
Helium.

* Frictionless flow of liquid through channel.

* Heat energy deposited in helium bath.
* Note(!): 1 W/em? limit.

Visualisation of Surface current Q“‘

[A/m] on HOM coupler.

Both of these are a function of to
material properties and

temperature.

* Highest H-field

Hook is the most at risk from heating!

» Large distance from cooling channel.
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RF-Mech: Thermal

Electrical Conductivity
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* Varies with literature. 100 | “Phonon peak’

Thermal Conductivity [W/mK]

* Phonon peak varies dramatically with RS e
chemical processing [T1]. i * H. Padamse, Book

* T use a pessimistic approach (orange curve). K « P, Dhakal (As reccived), Article

® P. Dhakal(Eq. 1: 100 um BCP +
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National Accelerator Facility, CA 23606, US.



RF-Mech: Thermal

o Iterative Simulation Technique:

1. Simulate electromagnetic fields in cavity structure for given temperature and
residual resistance (CST) and scale to V= 3.4 MV.

Simulate heating using thermal conductivity at that temperature.

3. [Iterate until temperature convergence.

Note: We split into sections and pessimistically take the maximum temperature.

f— pop—
1: 3rd iteration we ] e
Temparature
Type Temperature 0 T
Unit: K o~ V. { e— .- TR R | —
Time: 1 Fveerd - roeo -
" Bryoan n [ B3

2318 l l d20mé
22816 - 100 e

22413

22011
! 21609

21207

20805
I 20402

2 Min — — C— —

T
o~ TR .. S— m o e e
- 2a -
000 000 100.00 (rwn) I 20 l e
— — i o
25.00 75.00
. e — 12




RF-Mech: Thermal

* Results for Rs =10 nOhm, K =57.3 W/K/m

Rs = 10 nOhm Rs =10 nOhm
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* Converged temperature < 2.4 K
* Tc of Niobium ~ 9 K
*  Other things to study
» Effect of heat transfer coefficient (K) /
*  HOMC Notch detuning — higher field
* RRR of material — change in thermal conductivity

Frequency [MHz]
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RF-Mech: Multipacting

Resonant electron instability

1. Electron strikes surface (with certain energy).

= 300degC Bakeout
= Argon Discharge Cleaned
—  Wet Treatment

2. Generates (on-average) more than one
secondary particle. 03

SEY - Total

0 200 400 600 800 1000
Incident Energy [eV]

»  If secondary returns with same RF phase | &7 E oo 'H'““-\

and energy — avalanche effect — Z%( / . o
exponential electron growth.

* The electrons are a well for RF power — g

limiting the cavity from increasing in \ /'
: aroo]
voltage. Ve Tl

G. Burt (Lancaster University)
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RF-Mech: Multipacting (...double point)
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Note, the results are for a modified coupler, but present multipacting sims. conceptually.



RF-Mech: Mech. Advantages

1 Gasket h e atin g Gasket location
* The LC band-stop is before the gasket. E
* This acts like an electrical short.

* Very little dynamic heat load on the copper gasket (~ mW)!
« CRYOMODULE HAS DYNAMIC HEAT LOAD LIMIT (~ 20 W).
Beam

2.  Window location E

Al

* Window is perpendicular to charged
particles ejected from beam.

o | Hook type coupling

4 paswl

W47 Vil

A |

A |

| / K LC band-stop filter
| a|lis

* Screening current on window avoided

« WINDOW BREAKS - L Gasket locatin
CRYOMODULE DOWN ! 50Q output line and - /
mmatalicd Window, SaReit < o0 /| Eccentric coaxial line
RN /
’ IE ), Connection to wall
= ¥ }
Perpendicular coaxial line
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Evolution: Mech. Diftficulties #1

Machining

Wire cut from bulk Nb. Machined from flat to
round cross section.

\

* Machining time is very expensive.

 Circular cross-sections are the bottle-neck.

* For 6*4+spares this represents a significant
cost.

Solution: rectangular profile. .



Evolution: Mech. Difficulties #2

Welding of Capacitive Jacket

* Difficult to weld on curved surface.
* Could result in alignment issues and notch detuning.

Solution: Weld on flat surface.



Evolution: Mech. Difticulties #3

Manufacture of Outer Conductor

* Perpendicular coax line is ‘flush’ with coupler base.

‘wastage’.

Solution: Raise output line from base.



Evolution - Feedthroughs

HOMC power lines

Content from E. Montesinos (CERN)

Rated to:

HOM coupler
feedthrough
2K

Flexible
contacts

Ceramic for
thermal anchor
80K

Cryomodule
feedthrough

300 K
=

16 kW pulsed 1ms — 1Hz
—" 4 kW CW during 8 hours

... In parallel

LEP type feedthrough and field antenna feedthrough have
been assemble onto a vacuum leak detection system
After five cycles 60 seconds in cold nitrogen(-190 C) + 60
seconds in hot water (+ 80 C), both designs were qualified

20



Evolution - Feedthroughs

Content from E. Montesinos (CERN)

HOM coupler feedthroughs

Points of failure of the feedthroughs that
we identified
Inner line must be a tube

Outer line impedance step must be farer
from the ceramic

Not ok design

Ok design

New feedthroughs will be built and
validated with stressing cold/hot cycles

leeting, 13-16 November 2017, Ciemat, Madnid, Spain l

Now only 200 W capability
* Fine for SPS test
 Need to be modified for HL-LHC




Evolution: RF Issues

IMPEDANCE
* Some modes are above the impedance threshold.
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* [ measured the deviation in frequency and Qe for the manufactured cavities.
* Applying the variation observed stochastically... worst case HOM power for
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DQW HOMC: Design Goal

1. Incorporate solutions to manufacturing issues

2. Reduce all modes to below impedance
thresholds.

3. Reduce impedance of 960 MHz mode to <
le4 Ohms/cavity



DQW HOMC: Solution

Mechanical |

l.

2.

Flat section on capacitive jacket.
Square profile throughout.

Lifted output line for extruded ‘can’.

RF
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Conclusion

* RF design stage should incorporate
mechanical engineering ideals.
e Thermal, multipacting, operational
advantages.

» SPS tests have given many lessons which |
Will improve development of LHC b B
infrastructure. "
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Thanks for
Listening!



Back-Up Shides



DQW HOMC: Alternative

N

(c/f)/4 = (3E8/400E6)/4
=188 mm

Gasket H — shield

SPmameters [Magneuds 1 48]

Quarter wave rejection filter — centered at
fundamental mode.
Harmonics reject also.

Advantages

Loop type coupling — magnetic coupling to HOMs
— good broad-band damping.

High H-Field on cooled section — no AT to He.
Very easy to manufacture - mass produce.

Disadvantages

Gasket heat-load — 1000 x higher than LC
stopband.

Harmonics can be moved slightly but will always

be present. s



Future Ideas — HOMC Conditioning

FPC(C’s are conditioned before installation:

*  Acceptance test, desorption of absorbed gasses, ensuring required power level
(without RF breakdown), training ceramic...

Technique
*  Power, pulse length, duty cycle: Low = High (with FM and AM)

* Using ‘test-box’ in travelling wave mode.

HOM couplers are becoming higher and higher in
ower

* Do not see high power at high frequency until beam!

136406 SPrameters [Mogince n 8]
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RF-Mech: Test Boxes
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