HOMs for HL-LHC Crab Cavities *RF-Mechanical Aspects*

J. A. Mitchell^{1,2}

¹Engineering Department, Lancaster University: *Graeme Burt* ²BE-RF Section, CERN: *Rama Calaga*

IET-STFC RF-Mechanical Workshop Daresbury Laboratories, Warrington, UK, 13 September 2018

"... is therefore critical that combined <u>RF</u> and <u>Mechanical</u> studies are performed as part of RF device development" IET event description

I will present **DQW HOM coupler development**, design decisions and problems associated with **RF design and mechanical engineering.**

Outline

1) Theory

- HOMs, Excitation and Damping
- HOM Coupler

2) DQW HOM Coupler

- Operation
- RF-mechanical
 - Thermal, multipacting, design advantages
- Evolution to LHC
 - Lessons Manufacture
 - Lessons Power lines and feedthroughs
 - RF thresholds
- New Design

3) Alternative Design

4) Future concepts

HOMs

HOMs

- Higher Order Modes
- Resonances (eigenmodes) at frequencies higher than the fundamental.

Why are HOMs <u>Undesirable</u>?

- 1. Beam instabilities and emittance growth.
- 2. Power generation.

Which mode types cause which problems?

- Longitudinal (e.g. TM₀₁₀): Longitudinal emittance growth, energy spread and power generation.
- **Transverse (e.g.** TE_{110}): Transverse emittance growth and beam motion instabilities.

HOM Excitation

- The fundamental mode is excited from an **external RF source**.
 - Modulator, klystron, gridded tubes, magnetrons, solid state etc...
- The HOMs are excited from the **<u>charged particle beam</u>**.

 $Particles \ enter \ cavity \\ \downarrow \\ Image \ charges \ cannot \ travel \ as \ fast \ as \ bunch \ (longer \ path) \\ \downarrow \\ RF \ energy \ left \ behind: \ this \ is \ the \ \underline{WAKEFIELD} \ and \ is \ an \ EM \ wave \\ \downarrow \\ The \ energy \ is \ deposited \ in \ each \ excitable \ mode \ (need \ e-field \ along \ axis \ of \ beam \ propagation)$

HOM Damping

- HOM damping: providing a **power flux** away from the cavity resonator at the HOM frequency.
- Reduces the Q_e of the mode.

$$Q_e = \frac{\omega_0 U_{st}}{P_e} \qquad \frac{1}{Q_l} = \frac{1}{Q_0} + \frac{1}{Q_e}$$

• Mechanisms:

Note, for superconducting cavities, the Q0 is so large that we can assume Ql=Qe.

Coaxial dampers (on beam pipe), waveguide dampers (on beam pipe), absorbers, Fundamental Power Coupler (FPC), <u>on-cell dampers.</u>

The HOM Coupler: RF operation

• Taking the LHC HOM coupler as an example:

1) Couple to the field

- 'Hook' coupling mechanism.
- Preferentially magnetic coupling but also electric.
- 2) Reject fundamental mode
 - L-C notch filter at 400 MHz.
- 3) Provide power flux to HOMs
- Coaxial transmission line to load.

F. Gerigk Design of Higher Order Mode Dampers for the 400 MHz LHC Superconducting Cavities

DQW HOM Coupler: RF Operation

- DQW: Double Quarter Wave
 - Superconducting crab cavity for HL-LHC.
 - Currently being tested in the SPS (7 km proton synchrotron at CERN)
- DQW HOM Coupler: SPS version

CAD model

DQW HOM Coupler: Eqiv. Circuit

- Equivalent circuit modelling can reproduce the transmission response of the coupler very well.
- The circuit simulations are **many order of magnitudes faster** than the 3D FEA simulations.

- Magnetic field on coupler \rightarrow <u>Ohmic losses</u> \rightarrow <u>Heating</u>
- The heating is a function of:
 - 1. Amplitude of the magnetic field.
 - 2. Heat transfer coefficient.

- Frictionless flow of liquid through channel.
- Heat energy deposited in helium bath.
- Note(!): 1 W/cm² limit.

Both of these are a function of to <u>material properties</u> and <u>temperature</u>.

Hook is the most at risk from heating!

- Highest H-field
- Large distance from cooling channel.

Electrical Conductivity

$$\sigma = \frac{\mu_0 \pi f_{Hz}}{R^2}$$
$$R = R_{BCS} + R_{residual}$$
$$R_{BCS} = \frac{2 \times 10^{-4}}{T} \times \left(\frac{f_{GHz}}{1.5}\right)^2 \times e^{\frac{-17.67}{T}}$$

Thermal Conductivity

- Phonon peak varies dramatically with chemical processing [T1].
- I use a pessimistic approach (orange curve).

Iterative Simulation Technique:

- 1. Simulate electromagnetic fields in cavity structure for given temperature and residual resistance (CST) and scale to $V_T = 3.4$ MV.
- 2. Simulate heating using thermal conductivity at that temperature.
- 3. Iterate until temperature convergence.

Note: We split into sections and pessimistically take the maximum temperature.

• <u>Results for Rs = 10 nOhm, K = 57.3 W/K/m</u>

RF-Mech: Multipacting

Resonant electron instability

- 1. Electron strikes surface (with certain energy).
- 2. Generates (on-average) more than one secondary particle.

- If secondary returns with same <u>RF phase</u> and <u>energy</u> – avalanche effect – exponential electron growth.
- The electrons are a well for RF power limiting the cavity from increasing in voltage.

RF-Mech: Multipacting (...double point)

Note, the results are for a modified coupler, but present multipacting sims. conceptually,

15

RF-Mech: Mech. Advantages

- 1. Gasket heating
 - The LC band-stop is <u>before</u> the gasket.
 - This acts like an **electrical short**.

- Very little dynamic heat load on the copper gasket (~ mW)!
- CRYOMODULE HAS DYNAMIC HEAT LOAD LIMIT (~ 20 W).
- 2. Window location
 - Window is perpendicular to charged particles ejected from beam.
 - Screening current on window avoided
 - WINDOW BREAKS → CRYOMODULE DOWN!

Beam

Evolution: Mech. Difficulties #1

Machining

Wire cut from bulk Nb.

Machined from flat to round cross section.

Solution: rectangular profile.

- Machining time is very expensive.
- Circular cross-sections are the bottle-neck.
- For 6*4+spares this represents a significant cost.

Evolution: Mech. Difficulties #2

Welding of Capacitive Jacket

- Difficult to weld on curved surface.
- Could result in alignment issues and notch detuning.

Solution: Weld on flat surface.

Evolution: Mech. Difficulties #3

Manufacture of Outer Conductor

• Perpendicular coax line is 'flush' with coupler base.

Hence → Machined from bulk which is very expensive with large 'wastage'.

Solution: Raise output line from base.

Evolution - Feedthroughs

Content from E. Montesinos (CERN)

16 kW pulsed 1ms – 1Hz 4 kW CW during 8 hours

Vertical test – feedthroughs leaked!

... in parallel

LEP type feedthrough and field antenna feedthrough have been assemble onto a vacuum leak detection system After five cycles 60 seconds in cold nitrogen(-190 C) + 60 seconds in hot water (+ 80 C), both designs were qualified

Evolution - Feedthroughs

Content from E. Montesinos (CERN)

Evolution: RF Issues

IMPEDANCE

Some modes are above the impedance threshold.

POWER

- I measured the deviation in frequency and Qe for the manufactured cavities.
- Applying the variation observed stochastically... worst case HOM power for HL-LHC...

DQW HOMC: Design Goal

- 1. Incorporate solutions to <u>manufacturing issues</u>
- 2. Reduce all modes to below <u>impedance</u> <u>thresholds</u>.
- 3. Reduce impedance of <u>960 MHz mode</u> to < 1e4 Ohms/cavity

DQW HOMC: Solution

- 1. Flat section on capacitive jacket.
- 2. Square profile throughout.
- 3. Lifted output line for extruded 'can'.

Conclusion

- RF design stage should incorporate mechanical engineering ideals.
 - Thermal, multipacting, operational advantages.

• SPS tests have given many lessons which will improve development of LHC infrastructure.

25

Thanks for Listening!

Back-Up Slides

DQW HOMC: Alternative

- Quarter wave rejection filter centered at fundamental mode.
- Harmonics reject also.
- Advantages
- Loop type coupling magnetic coupling to HOMs good broad-band damping.
- High H-Field on cooled section no ΔT to He.
- Very easy to manufacture mass produce.
- Disadvantages
- Gasket heat-load 1000 x higher than LC stopband.
- Harmonics can be moved slightly but will always be present.

Future Ideas – HOMC Conditioning

FPC's are conditioned before installation:

• Acceptance test, desorption of absorbed gasses, ensuring required power level (without RF breakdown), training ceramic...

<u>Technique</u>

- Power, pulse length, duty cycle: Low \rightarrow High (with FM and AM)
- Using 'test-box' in travelling wave mode.

HOM couplers are becoming higher and higher in power

<u>Do not see high power at high frequency until beam!</u>

RF-Mech: Test Boxes

