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Crab cavity HOM damping: 2018 (1st QTR)

Double Quarter Wave (DQW) Radio Frequency Dipole (RFD)

3 x HOMC 1 x Hybrid field antenna 1 x H-HOMC 1 x V-HOMC
« Damp HOMs © IWif=fo, V=334 MV + Damp horizontal HOMs = Damp vertical HOMs
+ Damp several high frequency HOMs
(1.75 GHz horizontal mode)




Changes due to HOMs

Impedance thresholds: Z and Z | (, .y as 200 k(2 and 1 MQ/m.

o Each cavity had several modes over the threshold.

e Each cavity had one high power HOM.
Mode Nearest bunch 7 pr?
Cavity | frequency | spacing harmonic
[MHz| [MHz] kQ] | kW]
DQW 958.87 961.92 (24™) 100 | 10
RFD 760.94 761.52 (197") 29 9
@ Methods of reducing high power:

» HOM impedance (Q-factor) should be decreased.
» Detune mode frequency.

1Threshold is 1kW.

2 . . .
Power calculated at the frequency of the bunch spacing harmonic only and assuming that the mode
fully aligns with this frequency.
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Changes due to HOMs

DQW

@ Altered HOM coupler’s equivalent circuit.

@ Square profile, flat section on capacitive jacket and lifted output line.
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@ Detune high power HOM and alter ancillaries.

d
il

-9 MHz detuning of mode using cavity geometry.
» H-HOMC: larger waveguide stub, rotation, hook changes.
» V-HOMC: ‘electric’ to ‘electric and magnetic coupling’.

>
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SPS Measurements: Pre-Installation

@ Measured mode parameter deviation from simulations.

< 103
4 ) -~ Simulated
= 10 4 : — DQW.I
o000 Toa0 00 400 600 0 1000 1000 00 a0 TE00 800 000 Z 10 " i DQW_2
Messured Freguency M) Measured Freqency [Miiz) 2 kN — 961277 MHz
(a) Cavity 1 - Frequency (b) Cavity 1- Qy, Z 10°f e
2 ’ N
S 10 >
[P egipe)
4 =107F
i 10°
h 956 958 960 962 964 966 968

Frequency [MHz]

001000 1200 1400 1600 1500 2000

500 00 1000 1200 1400 1600 1500 2000 500
Measured Frequency [MHz]

Measured Frequency [MHz)
(d) Cavity 2- Q.

(c) Cavity 2 - Frequency

@ frange: -0.9% — +1.0%, Q-range: -50% — +100%
@ 959 MHz mode
» Frequency: + 3.31 MHz and + 3.47 MHz
» Q-factors: - 15% and - 30%
@ Mode could align with 24" bunch spacing harmonic:
confirms further damping needed.
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SPS Measurements: Pre-Installation

@ Measured frequencies and Q-factors used to modify simulated
impedance table and produce ‘measured’ impedance spectra.
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o Intra-cavity mode spread analysed.
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Coupler Measurements: Predicting damping

@ Individual coupler measurements on ‘test-boxes’ pre-assembly to compare
transfer function to simulations.
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@ Areas of decreased damping identified: correlate with Q-factor deviations.
@ Coupler-port location unknown.
@ In the future

» Record coupler mounting location.
» Acceptance criterion.
» Coupler installation location choice.
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SPS test: HOM measurements

Measurement goals

o Identify unforeseen issues arising from HOMs.

o Quantify effect of geometric deviations from manufacture on
HOMs.

o Ensure HOM performance with proton beam is predictable.

Measurements: HOM Power

@ The power from each of the HOM couplers was measured with
single and multi-bunch beams.
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SPS test: Coupling ratios

e High longitudinal impedance modes couple differently to each
coupler.
e This was measured to quantity the difference from simulation.

*HOMC1’/ *HOMC-A"
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e High power mode (960 MHz) only couples to top HOM coupler.

o — This means the high power will only be on the top
HOM coupler.
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SPS test: Single Bunch

@ Single bunch coast (one bunch for many hours).

@ Measurements from each coupler compared to analytical calculations
(impedance spectra altered with measured frequencies and Q-factors).
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couplers) HOM power for single bunch. source).

@ General form matches well (HOMs seen where predicted).

@ Analytical power under-estimated.
» Misrepresentation of proton bunch distribution.
» Underestimation of impedance spectra.
» Error in the measurement signal.
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SPS test: Profile measurements

@ Bunch represented by binomial formula (dependant on o and u).

@ 4 bunch coast used to measure profile of proton bunches.
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@ Bunch length spread + 10%, p error £ 0.5 from SPS nominal (1.5).
@ First bunch is close to Gaussian.

@ Also oscillations on bunch profile as a function of time. Frequency of
oscillations much faster than sweep time on analyser — very difficult to
compare broad-band response.
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SPS test: Multi-bunch

@ Power at different bunch numbers measured.

@ Both at the frequencies of the high Z; modes and multiples of the bunch
spacing harmonics (tsb).
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Overall Conclusions

e Both DQW and RFD crab cavities have changed from last review
to mitigate high power HOMs.
» DQW
* HOM coupler damping improvement.
* Geometric to ease manufacture.
» RFD
* Cavity geometry altered.

@ Mode parameter deviation measured and quantified.

» 960 MHz mode could align with 24** bunch spacing harmonic.
» Under/over damping predictable from test box measurements.

o DQW HOM measurements in the SPS

» Coupling ratios: high power more only couples to top HOM coupler.
» Single bunch broad band measurements
* Difficult to compare to analytic because of bunch profile
deviations and bunch instabilities.
* More information needed on bunch form.
» Multi-bunch measurements agree with analytic near to the bunch spacing
harmonics and agree for highest powers.
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Moving forward

e Study the effect of bunch profile variations in further detail.

2 mode)
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@ Re-designed ancillaries for 25 {2 matching for larger inner
conductors (see E. Montesinos’ talk).

o RFD SPS HOM measurments.

» Better record the bunch profile during MDs.
» Combine HOMC signals and have them continually logged to
timber or equivalent.
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LHC Crab Cavities
Impedance and Multipole Update

J. A. Mitchell!> 2

IEngineering Department
Lancaster University
2BE-RF Section
CERN

29/01/2019 - 140th HL-LHC WP2 Meeting

1/14



DQW Beampipe Ancillaries

m SPS DQW antenna was dual function: HOM damper
and fundamental mode antenna.

J. Mitchell

Impedance

m Functions split because damping geometry coupled to
beam (perturbing LLRF signal).
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Figure 1: SPS (left) and LHC (right) DQW crab cavities with
beampipe ancillaries highlighted.
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Impedance
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Concerning Modes

m Limits: L = 1 MQ/m/cavity, || = 200kQ/cavity.

J. Mitchell

f Qe R, Ry, Ry Notes
Impedance [MHz] [k /m] [k /m] k]
583.59 4381 - - 243.00 Far from bunch spacing harmonic
Close to bunch harmonic.
960.87 507 - - 4.70 Al203: R + 2%
Al203: Frequency + 0.75 MHz
1500.20| 23200 - 2009 -
1754.40| 8522 - 751 -
1921.98 | 60600 - 2505 - Not mesh converged.
Table 1: DQW
f Qe Ry Ry, Ry Notes
[MHz] [kQ/m] | [kQ/m] k€]
9.4 MHz from bunch harmonic.
752.06 217 - - 19.4 Not simulated with HOM coupler
ceramics.

Table 2: RFD

19t" and 24" bunch spacing harmonics: 761.52 MHz and 961.92 MHz
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HOM Power

J. Mitchell m HL-LHC beam parameters from [1].

m Mode frequency and Q varied: 1000 stochastic
variations.

Power
m Limits from SPS DQW measurements.
m Q: factor 0.5—2.0, f: -0.1—0.9%

Cavity | Pmas (Gaussian) [W] | Ppas, (Binomial) [W] Mode
DQW 1000 1000 961 MHz
RFD 8500 8200 752 MHz

Table 3: Maximum HOM power values.

Average DQW 960 MHz shifts

f: +0.35%, Q: 0.77XQsim

From measured RFD HOM deviations [Berrutti et. al.]
f: +0.342 MHz, Q: 1.26X Qgim
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DQW Feedthroughs - Tuning

Power

=
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J. Mitchell

Multipoles

Multipole Components

m Last meetings: Questions about by magnitude.
m Re-visited: Issues with CST field export and convergence

Panofsky Wenzel method did not converge. Lorentz Force does.

m Solved. Benchmarked with K. Papke’s code.

SPS DQW (Dressed)
bl b2 b3 b4
LF Re 33 6 1498 1026
Im 0 -2 19 -383
LHC DQW (Dressed)
bl b2 b3 b4
LF Re 33 6 1488 1048
Im 0 -2 21 -292
LHC RFD (Dressed)
bl b2 b3 b4
Re 34 0 -458 128
LE Im 0 0 -74 55

Table 4: Evolution of by, in units of mT/m™ ~ 1. Values correspond to a transverse
deflecting voltage of 10 MV and are evaluated with 64 points around the azimuth at a
radius of 30 mm.

m TDR: Limit of by was 1000 units.
m TDR: Limits pending for higher components.
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Conclusions

J litchell

DQW HOMs: two horizontal modes 2.5 times over threshold.

Conclusions m Worst case HOM Power in DQW (1000 W - very pessimistic)
is more likely. But it is manageable.

m Heat load in RFD could be problematic (8 times threshold),
f-shift is unlikely - measure during upcoming manufacture.

m Damping and tuning method for DQW 960 MHz mode.

m Multipoles: b4 are now more realistic — in limits.
Limits for b5?
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960 MHz Mode Shift
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Figure 4: Measured impedance spectra in SPS.
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Appendix
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Figure 5: Multipole coefficients as a function of longitudinal position.
Panofsky-Wenzel and Lorentz Force decomposition methods shown in blue and red dashed

lines respectively. 11/14



Appendix

Multipole Measurements

(PoP design).

m Measurement technique developed on aluminium prototype

m TDR: Limits pending for higher components.
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m Work from and detailed in the summer student report by P.

Gapais.

12 /14



Horizontal Modes

J litchell

1500 MHz mode Q can be reduced using a more complex
HOM damper.

m Probe material still under investigation - if copper can bring
down by 25%.

Appendix

m 1920 MHz mode is under investigation. I see a decrease in Q
with mesh convergence, beam-pipe length and without ports.

m There are also big differences between broadband and narrow
band solvers.
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